Part Number Hot Search : 
M74HC07 03597 0BZXC TEF4812 V23047 ISL8842A LC863528 218032P
Product Description
Full Text Search
 

To Download NBSG72AMNG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NBSG72A 2.5V/3.3V SiGe Differential 2 X 2 Crosspoint Switch with Output Level Select
The NBSG72A is a high-bandwidth fully differential 2 X 2 crosspoint switch with Output Level Select (OLS) capabilities. This is a part of the GigaCommTM family of high performance Silicon Germanium products. The device is housed in a low profile 3 X 3 mm 16-pin QFN package. Differential inputs incorporate internal 50 W termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The OLS input is used to program the peak-to-peak output amplitude between 0 mV and 800 mV in five discrete steps. The SELECT inputs are single-ended and can be driven with either LVECL or LVCMOS/LVTTL input levels.
http://onsemi.com MARKING DIAGRAM*
1
1 QFN-16 MN SUFFIX CASE 485G
* * * * * * *
Maximum Input Clock Frequency > 7 GHz Typical Maximum Input Data Rate > 7 Gb/s Typical 200 ps Typical Propagation Delay (OLS = FLOAT) 55/45 ps Typical Rise/Fall Times (OLS = FLOAT) Selectable Swing PECL Output with Operating Range: VCC = 2.375 V to 3.465 V with VEE = 0 V Selectable Swing NECL Output with NECL Inputs with Operating Range: VCC = 0 V with VEE = -2.375 V to -3.465 V Selectable Output Levels (0 mV, 200 mV, 400 mV, 600 mV or 800 mV Peak-to-Peak Output) 50 W Internal Input Termination Resistors (SELA, SELB) Pb-Free Package is Available
A L Y W = Assembly Location = Wafer Lot = Year = Work Week
*For additional marking information, refer to Application Note AND8002/D.
* * Single-Ended LVECL or LVCMOS/LVTTL Select Inputs *
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.
(c) Semiconductor Components Industries, LLC, 2004
1
October, 2004 - Rev. 2
Publication Order Number: NBSG72A/D
CC CC
16
SG 72A ALYW
NBSG72A
Exposed Pad (EP) VCC 16 VTD0 D0 D0 SELA Q0 15 Q0 14 OLS 13
1 2 NBSG72A 3 4
12 VCC 11 Q1 10 Q1 9 SELB
5 VEE
6 D1
7 D1
8 VTD1
Figure 1. QFN-16 Pinout (Top View) Table 1. PIN DESCRIPTION
Pin No. 1 2 Name VTD0 D0 I/O - LVDS, CML, ECL, LVTTL, LVCMOS Input LVDS, CML, ECL, LVTTL, LVCMOS Input LVECL, LVCMOS Input - LVDS, CML, ECL, LVTTL, LVCMOS Input LVDS, CML, ECL, LVTTL, LVCMOS Input - Description Common Internal 50 W Termination Pin for D0 and D0 Input. See Table 4. (Note 1) Inverted Differential Input 0.
3
D0
Noninverted Differential Input 0.
4 5 6
SELA VEE D1
Select Logic Input A. Internal 75 kW Pulldown to VEE. Negative Supply. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. Inverted Differential Input 1.
7
D1
8 9
VTD1
SELB Q1 Q1
LVECL, LVCMOS Input RSECL Output RSECL Output - Input RSECL Output RSECL Output - -
10 11
12 13 14 15 16 -
VCC
OLS (Note 2) Q0 Q0
VCC EP
1. In the differential configuration when the input termination pins (VTD0, VTD1) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation. 2. When an output level of 400 mV is desired and VCC - VEE > 3.0 V, 2 kW resistor should be connected from OLS pin to VEE.
A AAAAAAAAAAAAAAAAAAAAA A A AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA A A AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA A AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA A AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA
Noninverted Differential Input 1. Common Internal 50 W Termination Pin for D1 and D1 Input. See Table 4. (Note 1) Select Logic Input B. Internal 75 kW Pulldown to VEE. Noninverted Differential Output. Inverted Differential Output. Positive Supply. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. Input Pin for Output Level Select (OLS) See Table 3. Noninverted Differential Output Typically Terminated with 50 W Resistor to VTT = VCC - 2.0 V. Inverted Differential Output Typically Terminated with 50 W Resistor to VTT = VCC - 2.0 V. Positive Supply. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. Exposed Pad. The thermally exposed pad on package bottom (see case drawing) must be attached to a heat-sinking conduit.
AA AAAAAAAA A AA AAAA AAAAA AAAAAAAA AAAAAAA AAAAAAAA AAA A A AAAAA AA A AAAAAAAA AAAA AAAAAAAA AAAAA AAAAAAAA A AAAAAAAA A A AAAA AAAAA AAAAAAAA A AAAAAAAA AAAAAAAA A A AAAAAAAA AAAA A A A AAAAAAAA AAAAAAAA AAAAAAA A AAAAAAAA AAAA
http://onsemi.com
2
NBSG72A
VTD0 50 W D0 D0 D1 D1 50 W VTD1 SELA 75 kW 2 SELB 75 kW OLS 2 50 W 2 2 2 Q1 Q1 VCC VEE 2 2 50 W 2 2 2 Q0 Q0 +
Table 2. TRUTH TABLE
SELA LOW HIGH LOW HIGH SELB LOW LOW HIGH HIGH Q0 D0 D1 D0 D1 Q1 D0 D0 D1 D1
Figure 2. Logic/Block Diagram
Table 3. OUTPUT LEVEL SELECT (OLS)
OLS VCC VCC - 0.4 V VCC - 0.8 V VCC - 1.2 V VEE (Note 3) FLOAT Output Amplitude (VOUTPP) 800 mV 200 mV 600 mV 0 400 mV 600 mV OLS Sensitivity OLS - 75 mV OLS 150 mV OLS 100 mV OLS 75 mV OLS 100 mV N/A
3. When an output level of 400 mV is desired and VCC - VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE.
Table 4. INTERFACING OPTIONS
Interfacing Options CML LVDS AC-COUPLED RSECL, PECL, NECL LVCMOS / LVTTL Connect VTD0 and VTD1 to VCC VTD0 and VTD1 Should Be Left Floating. Bias VTD0 and VTD1 Inputs within Common Mode Range (VIHCMR) Standard ECL Termination Techniques The external voltage should be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL and VCC/2 for LVCMOS Inputs. Connections
http://onsemi.com
3
NBSG72A
Table 5. ATTRIBUTES
Characteristics Internal Input Pulldown Resistor (SELA, SELB) ESD Protection Human Body Model Machine Model Charged Device Model Value 75 kW > 2 kV > 50 V > 1 kV Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in 436
Moisture Sensitivity (Note 1) Flammability Rating Transistor Count Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D.
Table 6. MAXIMUM RATINGS
Symbol VCC VEE VI VINPP Iout IIN TA Tstg qJA qJC Tsol Parameter Positive Power Supply Negative Power Supply Positive Input Negative Input Differential Input Voltage |DX - DX| Output Current Input Current Through RT (50 W Resistor) Operating Temperature Range Storage Temperature Range Thermal Resistance (Junction-to-Ambient) (Note 2) Thermal Resistance (Junction-to-Case) Wave Solder 0 lfpm 500 lfpm (Note 2) < 15 sec QFN-16 QFN-16 QFN-16 Condition 1 VEE = 0 V VCC = 0 V VEE = 0 V VCC = 0 V VEE - VCC w 2.8 V VEE - VCC t 2.8 V Continuous Surge Static Surge VI VCC VI VEE Condition 2 Rating 3.6 -3.6 3.6 -3.6 2.8 |VCC - VEE| 25 50 45 80 -40 to +85 -65 to +150 42 35 4 225 Units V V V V V mA mA mA mA C C C/W C/W C/W C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 2. JEDEC standard multilayer board - 1S2P (1 signal, 2 power).
http://onsemi.com
4
NBSG72A
Table 7. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT VCC = 2.5 V; VEE = 0 V (Note 3)
-40C Symbol IEE VOH VOL Characteristic Negative Power Supply Current Output HIGH Voltage (Note 4) Output LOW Voltage (Note 4) (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS = FLOAT) (OLS = VCC - 1.2 V) (OLS = VEE) VOUTPP Output Voltage Amplitude (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS = FLOAT) (OLS = VCC - 1.2 V) (OLS = VEE) VIH VIL VIHCMR RTIN IIH IIL Input HIGH Voltage (Single-Ended) (Note 6) D0, D0, D1, D1 Input LOW Voltage (Single-Ended) (Note 7) D0, D0, D1, D1 Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5) Internal Input Termination Resistor Input HIGH Current (@VIH) Input LOW Current (@VIL) 700 125 525 0 325 VEE + 1275 VEE 1.2 45 50 35 20 800 215 615 5 415 VCC - 1000* VCC- 1400* VCC VIH- 150 2.5 55 100 100 680 120 520 0 320 VEE + 1275 VEE 1.2 45 50 35 20 795 210 610 0 410 VCC - 1000* VCC- 1400* VCC VIH- 150 2.5 55 100 100 680 120 515 0 320 VEE + 1275 VEE 1.2 45 50 35 20 790 210 605 5 410 VCC- 1000* VCC- 1400* VCC VIH- 150 2.5 55 100 100 mV mV V W mA mA 555 1235 775 1455 1005 705 1295 895 1505 1095 855 1355 1015 1555 1185 595 1270 810 1490 1040 745 1330 930 1540 1130 895 1390 1050 1590 1220 625 1295 840 1510 1065 775 1355 960 1560 1155 925 1415 1080 1610 1245 mV Min 40 1460 Typ 55 1510 Max 65 1560 Min 40 1490 25C Typ 55 1540 Max 65 1590 Min 40 1515 85C Typ 55 1565 Max 65 1615 Unit mA mV mV
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. *Typicals used for testing purposes. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to -0.965 V. 4. All loading with 50 W to VCC - 2.0 V. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 6. VIH cannot exceed VCC. 7. VIL always w VEE.
http://onsemi.com
5
NBSG72A
Table 8. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT VCC = 3.3 V; VEE = 0 V (Note 8)
-40C Symbol IEE VOH VOL Characteristic Negative Power Supply Current Output HIGH Voltage (Note 9) Output LOW Voltage (Note 9) (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS = FLOAT) (OLS = VCC - 1.2 V) **(OLS = VEE) VOUTPP Output Amplitude Voltage (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS = FLOAT) (OLS = VCC - 1.2 V) **(OLS = VEE) VIH VIL VIHCMR Input HIGH Voltage (Single-Ended) (Note 11) D0, D0, D1, D1 Input LOW Voltage (Single-Ended) (Note 12) D0, D0, D1, D1 Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10) Internal Input Termination Resistor Input HIGH Current (@VIH) Input LOW Current (@VIL) 715 130 550 0 345 VEE + 1275 VIH- 2600 1.2 815 220 640 0 435 VCC - 1000* VCC- 1400* VCC VIH- 150 3.3 705 125 545 0 340 VEE + 1275 VIH- 2600 1.2 805 215 635 0 430 VCC - 1000* VCC- 1400* VCC VIH- 150 3.3 690 125 540 0 335 VEE + 1275 VIH- 2600 1.2 800 215 630 0 425 VCC - 1000* VCC- 1400* VCC VIH- 150 3.3 mV mV V 1320 2030 1550 2260 1785 1470 2090 1670 2310 1875 1620 2150 1790 2360 1965 1360 2065 1585 2290 1820 1510 2125 1705 2340 1910 1660 2185 1825 2390 2000 1390 2090 1615 2315 1850 1540 2150 1735 2365 1940 1690 2210 1855 2415 2030 mV Min 40 2260 Typ 55 2310 Max 65 2360 Min 40 2290 25C Typ 55 2340 Max 65 2390 Min 40 2315 85C Typ 55 2365 Max 65 2415 Unit mA mV mV
RTIN IIH IIL
45
50 35 20
55 100 100
45
50 35 20
55 100 100
45
50 35 20
55 100 100
W mA mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. *Typicals used for testing purposes. **When an output level of 400 mV is desired and VCC - VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 8. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.165 V. 9. All loading with 50 W to VCC - 2.0 V. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 11. VIH cannot exceed VCC. 12. VIL always w VEE.
http://onsemi.com
6
NBSG72A
Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT VCC = 0 V; VEE = -3.465 V to -2.375 V (Note 13)
-40C Symbol IEE VOH VOL Characteristic Negative Power Supply Current Output HIGH Voltage (Note 14) Output LOW Voltage (Note 14) -3.465 V v VEE v -3.0 V (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS =FLOAT) (OLS = VCC - 1.2 V) **(OLS = VEE) -3.0 V < VEE v -2.375 V (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS =FLOAT) (OLS = VCC - 1.2 V) (OLS = VEE) Output Voltage Amplitude -3.465 V v VEE v -3.0 V (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS = FLOAT) (OLS = VCC - 1.2 V) **(OLS = VEE) -3.0 V < VEE v -2.375 V (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS =FLOAT) (OLS = VCC - 1.2 V) (OLS = VEE) Input HIGH Voltage (Single-Ended) (Note 16) D0, D0, D1, D1 Input LOW Voltage (Single-Ended) (Note 17) D0, D0, D1, D1 Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 15) Internal Input Termination Resistor Input HIGH Current (@VIH) Input LOW Current (@VIL) OLS Input Current (See Figure 9) (OLS = VCC) (OLS = VCC - 0.4 V) (OLS = VCC - 0.8 V, OLS = FLOAT) (OLS = VCC - 1.2 V) -3.0 V < VEE v -2.375 V (OLS = VEE) -3.465 V v VEE v -3.0 V *(OLS = VEE) Min 40 -1040 Typ 55 -990 Max 65 -840 Min 40 -1010 25C Typ 55 -960 Max 65 -910 Min 40 -985 85C Typ 55 -935 Max 65 -885 Unit mA mV mV -1980 -1270 -1750 -1040 -1515 -1945 -1265 -1725 -1045 -1495 -1830 -1210 -1630 -990 -1425 -1795 -1205 -1605 -995 -1405 -1680 -1150 -1510 -940 -1335 -1645 -1145 -1485 -945 -1315 -1940 -1235 -1715 -1010 -1480 -1905 -1230 -1690 -1010 -1460 -1790 -1175 -1595 -960 -1390 -1755 -1170 -1570 -960 -1370 -1640 -1115 -1475 -910 -1300 -1605 -1110 -1450 -910 -1280 -1910 -1210 -1685 -985 -1450 -1875 -1205 -1660 -990 -1435 -1760 -1150 -1565 -935 -1360 -1725 -1145 -1540 -940 -1345 -1610 -1090 -1445 -885 -1270 -1575 -1085 -1420 -890 -1255 mV 715 130 550 0 345 700 125 525 0 325 VEE + 1275 VIH- 2600 815 220 640 0 435 800 215 615 5 415 VCC - 1000* VCC- 1400* VCC VIH- 150 0.0 705 125 545 0 340 690 120 520 0 320 VEE + 1275 VIH- 2600 805 215 635 0 430 795 210 610 0 410 VCC - 1000* VCC- 1400* VCC VIH- 150 0.0 690 125 540 0 335 680 120 515 0 320 VEE + 1275 VIH- 2600 800 215 630 0 425 790 210 605 5 410 VCC - 1000* VCC- 1400* VCC VIH- 150 0.0 mV mV V
VOUTPP
VIH VIL VIHCMR
VEE+1.2
VEE+1.2
VEE+1.2
RTIN IIH IIL IOLS
45
50 35 20 300 100 5 -100 -400 -600
55 100 100 900 300 100
45
50 35 20 300 100 5 -100 -400 -600
55 100 100 900 300 100
45
50 35 20 300 100 5 -100 -400 -600
55 100 100 900 300 100
W mA mA mA
-300 -1000 -1500
-300 -1000 -1500
-300 -1000 -1500
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. *Typicals used for testing purposes. **When an output level of 400 mV is desired and VCC - VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 13. Input and output parameters vary 1:1 with VCC. 14. All loading with 50 W to VCC - 2.0 V. 15. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 16. VIH cannot exceed VCC. 17. VIL always w VEE.
http://onsemi.com
7
NBSG72A
Table 10. AC CHARACTERISTICS VCC = 0 V; VEE = -3.465 V to -2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V (Note 18)
-40C Symbol VOUTPP Characteristic Output Voltage Amplitude (Note 18) fin < 5 GHz fin v 7 GHz tPLH Propagation Delay to Output Differential D0, D1 Q0, Q1 SELA, SELB Q0, Q1 Propagation Delay to Output Differential D0, D1 Q0, Q1 SELA, SELB Q0, Q1 Duty Cycle Skew (Note 19) Within-Device Skew Device-to-Device Skew RMS Random Clock Jitter (Note 20) fin v7 GHz Peak-to-Peak Data Dependent Jitter (Note 21) fin v7 Gb/s Input Voltage Swing/Sensitivity (Differential Configuration) (Note 22) Output Rise/Fall Times (20% - 80%) @ 1 GHz (Q0, Q1) tr tf 75 Min 400 200 170 190 170 150 Typ 590 250 205 265 205 215 5.0 5.0 15 0.2 12 255 350 255 270 25 25 50 1.5 18 2600 75 Max Min 450 180 170 190 170 150 25C Typ 590 250 205 265 205 215 5.0 5.0 15 0.2 12 255 350 255 270 25 25 50 1.5 18 2600 75 Max Min 440 130 170 190 170 150 85C Typ 590 250 ps 210 265 210 215 5.0 5.0 15 0.2 12 260 350 ps 260 270 25 25 50 1.5 18 2600 mV ps 40 30 55 45 70 55 40 30 55 45 70 55 40 30 55 45 70 55 ps Max Unit mV
tPHL
tSKEW
tJITTER
ps
VINPP tr tf
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 18. Measured using a 75 mV source, 50% duty cycle clock source. All loading with 50 W to VCC - 2.0 V. OLS = FLOAT. Input edge rates 40 ps (20% - 80%). 19. tSKEW = |tPLH - tPHL| for a nominal 50% differential clock input waveform. 20. Additive RMS jitter with 50% Duty Cycle clock signal at 7 GHz. 21. Additive Peak-to-Peak data dependent jitter with NRZ PRBS 231-1 data at 7 Gb/s. 22. Input Voltage Swing is a single-ended measurement operating in differential mode. VINPP (max) cannot exceed VCC - VEE.
900 OUTPUT VOLTAGE AMPLITUDE (mV) 800 700 600 500 *OLS = VEE 400 300 OLS = VCC - 0.4 V 200 100 0 1 2 3 4 5 6 7 8 9 INPUT FREQUENCY (GHz) OLS = VCC - 0.8 V = FLOAT OLS = VCC
Figure 3. Output Voltage Amplitude (VOUTPP) vs. Input Clock Frequency (fin) @ Ambient Temperature (Typical)
*When an output level of 400 mV is desired and VCC - VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE.
http://onsemi.com
8
NBSG72A
D0 Input Signal D0 Signal Path NBSG72A Non-Driven Input D1 D1 SELA SELB Q1 Measured Q1 Non-Driven Output (VNA) Q0 Selected Q0 Output 20
0 Yscale = 10 dB/div
0 dB
Q
Logic Low
Logic High
Q
-80
1
Xscale = 1 GHz/div
8
Figure 4. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D0 to Q0 Signal Path Selected; SelA = Low, SelB = High)
D0 Non-Driven Input D0
NBSG72A
Q0 Selected Q0 Output
20
0 D1 Input Signal D1 SELA SELB Measured Non-Driven Output Q1 (VNA) Q1 Yscale = 10 dB/div 0 dB
Q Q
Logic High
Logic Low -80 1 Xscale = 1 GHz/div 8
Figure 5. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D1 to Q0 Signal Path Selected; SelA = High, SelB = Low)
http://onsemi.com
9
NBSG72A
D0 Non-Driven Input D0 Q0 Signal Path Non-Driven Q0 Selected Output 20 0dB
Input Signal
D1
NBSG72A SELA SELB
Measured Output Q1 (VNA)
Yscale = 10 dB/div
D1
Q1
0
Q Q
Logic Low
Logic Low
-80 1
Xscale = 1 GHz/div
8
Figure 6. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D0 to Q0 and Q1 Signal Path Selected; SelA = Low, SelB = Low)
D0 Input Signal D0
NBSG72A
Q0 Measured Output Q0 (VNA) 20
Signal Path SELA SELB
Non-Driven Q1 Selected Output
Yscale = 10 dB/div
D1 Non-Driven Input D1
Q1
0
0dB Q Q
Logic High
Logic High
-80 1
Xscale = 1 GHz/div
8
Figure 7. Channel-to-Channel Crosstalk Isolation at Ambient Temperature (D1 to Q0 and Q1 Signal Path Selected; SelA = High, SelB = High)
http://onsemi.com
10
NBSG72A
Y = 75 mv/div
Total System Jitter = 17.2 ps Input Generator Jitter = 10 ps Device Jitter = 6.8 ps
X = 60 ps/div
Figure 8. Eye Diagram at 3.2 Gb/s (VCC - VEE = 3.3 V, OLS = FLOAT @ 255C with input pattern of 231-1 PRBS, 5000 Waveforms)
Y = 80 mV/div
Total System Jitter = 17.2 ps Input Generator Jitter = 10 ps Device Jitter = 7.2 ps
X = 21 ps/div
Figure 9. Eye Diagram at 7 GBit/s (VCC - VEE = 3.3 V, OLS = FLOAT @ 255C with input pattern of 231-1 PRBS, 5000 Waveforms)
300 200 100 0 IOLS (mA) -100 -200 -300 -400 -500 -600 -700 VCC VCC - 400 VCC - 800 VOLS (mV) VCC - 1200 VEE
Figure 10. Typical OLS Input Current vs. OLS Input Voltage (VCC - VEE = 3.3 V @ 255C)
http://onsemi.com
11
NBSG72A
1000 VCC - 75 800 VCC - 700 600 VEE + 100 400 VCC - 250 200 VCC - 1125 0 VCC VCC - 400 VCC - 800 OLS (mV) VCC - 1200 VEE VCC - 1275 VCC - 550 VCC - 900
VOUTPP (mV)
Figure 11. OLS Operating Area
D VINPP = VIH(D) - VIL(D) D Q VOUTPP = VOH(Q) - VOL(Q) Q tPHL tPLH
Figure 12. AC Reference Measurement
Q Driver Device Q
Zo = 50 W
D Receiver Device
Zo = 50 W 50 W 50 W
D
VTT VTT = VCC - 2.0 V
Figure 13. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)
http://onsemi.com
12
NBSG72A
ORDERING INFORMATION
Device NBSG72AMN NBSG72AMNG NBSG72AMNR2 Package QFN-16 QFN-16 (Pb-Free) QFN-16 Shipping 123 Units / Rail 123 Units / Rail 3000 / Tape & Reel
Board NBSG72AMNEVB
Description NBSG72AMN Evaluation Board
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
http://onsemi.com
13
NBSG72A
Resource Reference of Application Notes
AN1405/D AN1406/D AN1503/D AN1504/D AN1568/D AN1642/D AND8001/D AND8002/D AND8020/D AND8066/D AND8090/D - ECL Clock Distribution Techniques - Designing with PECL (ECL at +5.0 V) - ECLinPSt I/O SPiCE Modeling Kit - Metastability and the ECLinPS Family - Interfacing Between LVDS and ECL - The ECL Translator Guide - Odd Number Counters Design - Marking and Date Codes - Termination of ECL Logic Devices - Interfacing with ECLinPS - AC Characteristics of ECL Devices
http://onsemi.com
14
NBSG72A
PACKAGE DIMENSIONS
D
A B
16 PIN QFN MN SUFFIX CASE 485G-01 ISSUE B
PIN 1 LOCATION
E
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.18 0.30 3.00 BSC 1.65 1.85 3.00 BSC 1.65 1.85 0.50 BSC 0.20 --- 0.30 0.50
0.15 C 0.15 C 0.10 C TOP VIEW
16 X
0.08 C SIDE VIEW A1 C
16X
L
5
NOTE 5 4
16X
K
1 12
16X
0.10 C A B 0.05 C
NOTE 3
CCC CCC CCC
(A3) D2 e
8 9 16 13
A
SEATING PLANE
DIM A A1 A3 b D D2 E E2 e K L
EXPOSED PAD
E2 e
b BOTTOM VIEW
SOLDERING FOOTPRINT*
3.25 0.128 0.30 0.012
0.575 0.022
EXPOSED PAD
3.25 0.128
1.50 0.059
0.50 0.02
0.30 0.012
SCALE 10:1 mm inches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
15
NBSG72A
GigaComm is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.
http://onsemi.com
16
NBSG72A/D


▲Up To Search▲   

 
Price & Availability of NBSG72AMNG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X